previos homepage web-resources    email-to-webmaster questions next

ТЕМА 9 : АТМОСФЕРА
  ИЛЛЮСТРИРОВАННЫЙ СПРАВОЧНИК ПО ТЕМЕ : оглавление   УЧЕБНЫЕ ТЕКСТЫ ПО МЕТЕОРОЛОГИИ: оглавление>>>
  Давление  | Циркуляция  | Ветры  | Шкала Бофорта  | Карты погоды  

МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ

АТМОСФЕРНАЯ ЦИРКУЛЯЦИЯ
(по С.П. Хромову)

   

Общая циркуляция атмосферы

Общей циркуляцией атмосферы называют систему крупномасштабных воздушных течений над Земным шаром, т. е. таких течений, которые по своим размерам соизмеримы с большими частями материков и океанов. От общей циркуляции атмосферы отличают местные циркуляции, такие, как бризы на побережьях морей, горно-долинные ветры, ледниковые ветры и др. Эти местные циркуляции временами и в определенных районах налагаются на течения общей циркуляции.

На ежедневных синоптических картах погоды видно, как в каждый данный момент распределяются течения общей циркуляции над большими площадями Земли или над всем Земным шаром и как непрерывно меняется это распределение. Разнообразие проявлений общей циркуляции атмосферы в особенности зависит от того, что в атмосфере постоянно возникают огромные волны и вихри, по-разному развивающиеся и по-разному перемещающиеся. Это образование атмосферных возмущений - циклонов и антициклонов - является самой характерной чертой общей циркуляции атмосферы.
Однако в общей циркуляции атмосферы, при всем разнообразии ее непрерывных изменений, можно подметить и некоторые устойчивые особенности, повторяющиеся из года в год. Такие особенности лучше всего выявляются с помощью статистического осреднения, при котором ежедневные возмущения циркуляции более или менее сглаживаются.


Средняя величина давления для Земного шара и полушарий

Средняя величина атмосферного давления на уровне моря для всего Земного шара, определенная из многолетних средних карт, близка к 1013 мб (760 мм рт. ст.), а на уровне местности (учитывая возвышение материков над уровнем моря) - к 982 мб (740 мм рт. ст.). Зная эту среднюю величину, а также площадь Земли, можно вычислить общую массу атмосферы.

Средняя величина давления над каждым полушарием понижается от зимнего полугодия к летнему. От января к июлю она понижается над северным полушарием на несколько миллибаров; в южном полушарии происходит обратное изменение. Но атмосферное давление равно весу столба воздуха и, следовательно, пропорционально массе воздуха. Это значит, что из того полушария, в котором в данное время лето, какая-то масса воздуха оттекла в то полушарие, в котором в это время зима. Следовательно, происходит сезонный обмен воздуха между полушариями.
За год из северного полушария в южное и обратно переносится 1013 т воздуха.

Переходим теперь к более детальному рассмотрению условий общей циркуляции по зонам.

Пассаты

Пассаты- это устойчивые в общем восточные ветры умеренной скорости (в среднем 5-8 м/сек у земной поверхности), дующие в каждом полушарии на обращенной к экватору стороне субтропической зоны высокого давления. Однако субтропические зоны даже на средних картах (а тем более на картах ежедневных) распадаются на отдельные антициклоны. Таким образом, пассаты - это ветры в обращенных к экватору частях субтропических антициклонов.

Субтропические антициклоны вытянуты по широте. Поэтому на их обращенной к экватору периферии изобары проходят параллельно широтным кругам, и, следовательно, пассаты над уровнем трения должны иметь восточное направление . Однако на востоке каждого антициклона к восточной составляющей ветра присоединяется еще направленная к экватору составляющая (вспомним, как дуют ветры в антициклоне!), а на западе - составляющая, направленная от экватора.
В общем же меридиональные составляющие в пассатном переносе малы по сравнению с восточной составляющей.
В слоях, близких к земной поверхности, где действует трение, ветер отклоняется от изобар на некоторый угол в сторону низкого давления. Это значит, что на южной периферии субтропического антициклона в северном полушарии у земной поверхности вместо восточных ветров получаются северо-восточные; аналогично на северной периферии субтропического антициклона в южном полушарии у земной поверхности получаются юго-восточные ветры. Иначе говоря, вследствие трения пассаты получают дополнительные составляющие, направленные к экватору. Пассаты северного полушария часто называют поэтому северо-восточными, а пассаты южного полушария - юго-восточными.
Однако нужно помнить, что эти направления пассатов характерны только вблизи земной поверхности, и то не для всей области пассатов, а только там, где изобары субтропического антициклона вытянуты по широте.
Субтропические антициклоны над океанами очень хорошо выражены на многолетних средних картах. На ежедневных картах видно, однако, что это вовсе не постоянно существующие антициклоны. На самом деле антициклоны здесь возникают заново, перемещаются, исчезают. Но при этом антициклоны в субтропиках абсолютно преобладают над циклонами. Поэтому на многолетних средних картах и создаются субтропические центры действия с высоким давлением.
Заметим еще, что на климатологических картах над каждым океаном в каждом полушарии расположено по одному антициклону. На ежедневных же картах их больше - часто два, иногда три над каждым океаном; над южным Тихим океаном - до четырех.
Распределение давления меняется в тропиках день ото дня мало. Поэтому пассаты обладают большой устойчивостью направления. Но все же, поскольку субтропические антициклоны день ото дня перемещаются, направления пассатных ветров также, в общем, подвержены некоторым изменениям. Допустим, например, что над океаном располагается не один, а два субтропических антициклона или более. При их перемещении с запада на восток место наблюдения переходит сначала в тыл первого антициклона, потом в переднюю часть второго. При этом пассат меняет северо-восточное направление на восточное и юго-восточное, затем снова на северо-восточное. Кроме того, внутри пассатов возникают атмосферные волны, которые также могут приводить к изменениям направления пассатов.

Погода пассатов

В нижнем слое пассатов воздух вследствие влияния трения течет с составляющей, направленной к экватору. На восточной периферии каждого субтропического антициклона эта составляющая, направленная к экватору, значительно усиливается уже независимо от трения. Поэтому, двигаясь на все более теплую поверхность моря, пассатное течение в нижних слоях приобретает неустойчивость стратификации.

Устанавливаются большие вертикальные градиенты температуры, и развивается оживленная конвекция со скоростями восходящих токов порядка 2,5-4 м/сек и с образованием кучевых облаков.
Но конвекция не достигает больших высот. Уже на высотах порядка 12000-2000 м в области пассатов обнаруживается задерживающий слой в несколько сотен метров толщиною с инверсией температуры или, по крайней мере, с уменьшением вертикального градиента температуры. Эта пассатная инверсия образуется при оседании воздуха, характерном для всякого хорошо развитого антициклона не только в тропиках. Инверсия и задерживает развитие конвекции на сравнительно низком уровне. Облака не получают большого вертикального развития, нередко принимают характер слоисто-кучевых и, во всяком случае, не достигают уровня оледенения, который в тропиках лежит выше 5 км. Поэтому из облаков или вовсе не выпадает осадков, или выпадают незначительные кратковременные и мелкокапельные дожди, обусловленные взаимным слиянием капелек, без посредства ледяной фазы.

Антипассаты

Вертикальная мощность пассатов увеличивается к экватору. Под 20-й параллелью она порядка 2-4 км. Вблизи экватора, особенно в летнем полушарии, восточные ветры захватывают уже всю тропосферу и стратосферу.
Там, где пассаты простираются не на всю тропосферу, ветры над ними имеют преобладающее западное направление, то же самое, которое господствует в средней и верхней тропосфере во внетропических широтах.
Западные ветры над пассатами носят название антипассатов. Прежде считали, что они дуют противоположно приземному направлению пассатов, т. е. в северном полушарии с юго-запада и в южном с северо-запада. Наблюдения этого не подтвердили. Антипассаты - вообще западные ветры, такие же, как и в более высоких широтах на тех же уровнях. Меридиональные составляющие в них малы и могут быть различны по направлению. Однако преобладают все же составляющие, направленные от экватора к высоким широтам.

Внутритропическая зона конвергенции

Пассаты обоих полушарий разделены переходной зоной с неравномерными, часто слабыми, но иногда и довольно сильными шквалистыми ветрами. В этой зоне в общем наблюдается сходимость воздушных течений, почему она и называется внутритропической зоной конвергенции. Прежде она называлась экваториальной зоной затишья; но, как мы уже сказали, она отнюдь не всегда характеризуется слабыми ветрами или штилем.
Вследствие сходимости ветра конвекция в этой зоне резко усилена и развивается до больших высот по сравнению с зонами пассатов. Сильные восходящие движения прорывают и размывают здесь пассатную инверсию. Облака превращаются в мощные кучевые и кучево-дождевые, и из последних выпадают обильные осадки ливневого характера. Положение внутритропической зоны конвергенции на отдельных ее участках изо дня в день меняется, и иногда значительно. Нередко внутритропическая зона конвергенции обостряется в узкий тропический фронт, на котором пассат одного полушария непосредственно сменяется пассатом другого полушария.

О муссонах вообще

В некоторых областях Земли перенос воздуха в нижней половине тропосферы носит название муссонов. Муссоны - это устойчивые сезонные режимы воздушных течений с резким изменением преобладающего направления ветра от зимы к лету и от лета к зиме. В каждом месте области муссонов в течение каждого из двух основных сезонов существует режим ветра с резко выраженным преобладанием одного направления (квадранта или октанта) над другими. При этом в другом сезоне преобладающее направление ветра будет противоположным или близким к противоположному. Таким образом, в каждой муссонной области есть зимний муссон и летний муссон с взаимно противоположными или, по крайней мере, с резко различными преобладающими направлениями.

Конечно, кроме ветров преобладающего направления, в каждом сезоне наблюдаются и ветры других направлений: муссон испытывает перебои. В переходные сезоны, весной и осенью, когда происходит смена муссонов, устойчивость режима ветра нарушается.
Устойчивость муссонов связана с устойчивым распределением атмосферного давления в течение каждого сезона, а их сезонная смена - с коренными изменениями в распределении давления от сезона к сезону. Преобладающие барические градиенты резко меняют направление от сезона к сезону, а вместе с этим меняется и направление ветра.
В случае муссонов, как и в случае пассатов, устойчивость распределения вовсе не означает, что в течение сезона над данным районом удерживается один и тот же антициклон или одна и та же депрессия. Например, зимою над Восточной Азией последовательно сменяется целый ряд антициклонов. Но каждый из этих антициклонов сохраняется относительно долго, а число дней с антициклонами значительно превышает число дней с циклонами. В результате антициклон получается и на многолетней средней климатологической карте. Северные направления ветра, связанные с восточными перифериями антициклонов, преобладают над всеми другими направлениями ветра; это и есть зимний восточноазиатский муссон. Итак, муссоны наблюдаются в тех районах, где циклоны и антициклоны обладают достаточной устойчивостью и резким сезонным преобладанием одних над другими. В тех же областях Земли, где циклоны и антициклоны быстро сменяют друг друга и одни мало преобладают над другими, режим ветра изменчив и не похож на муссонный. Так обстоит дело и в большей части Европы.

Тропические муссоны

Особенно резко выраженные и устойчивые муссоны наблюдаются в тропических широтах. В Тихом и Атлантическом океанах эти тропические муссоны развиты мало, за исключением западной части Тихого океана и смежных с нею районов Восточной Азии и Индонезии. Над этими океанами в тропиках преобладают пассаты, устойчиво сохраняющие свое преобладающее восточное направление в течение всего года. Зато в бассейне Индийского океана муссонная циркуляция наблюдается на обширных пространствах внутри тропиков: почти над всем северным Индийским океаном, над Индостаном, Индокитаем, южным Китаем, над Индонезией, над низкими широтами южного Индийского океана вплоть до Мадагаскара и северной Австралии, а также над большими площадями в Экваториальной Африке, особенно в ее восточной части.
Сильное развитие муссонов в указанной области связано со своеобразием ее географических условий, именно с наличиемк северу от Индийского океана огромного материка Азии, а также с распространением материка Африки на оба полушария.
Непосредственное условие режима тропических муссонов заключается в сезонном изменении положения субтропических антициклонов и экваториальной депрессии. Напомним, что экваториальная депрессия в июле смещается в более высокие широты северного полушария, особенно на материках, а в январе отодвигается в южное полушарие. Субтропические антициклоны вместе с этим смещаются к северу в июле и к югу в январе. Вследствие такого сезонного перемещения в некоторых областях по обе стороны от экватора происходит резкое сезонное изменение преобладающих барических градиентов и, следовательно, преобладающих ветров.
Зимний муссон совпадает по своему направлению, в общем восточному, с пассатом: он дует по обращенной к экватору периферии субтропического антициклона данного полушария. Направление летнего муссона, напротив, противоположно пассатному: в общем оно не восточное, а западное, по обращенной к экватору периферии депрессии, находящейся в данном полушарии. Смена тропических муссонов, вообще говоря, есть смена преобладающих восточных ветров в тропиках на преобладающие западные ветры или обратно.
Итак, основную причину тропических муссонов можно видеть в различном нагревании полушарий в течение года. Если по обе стороны от экватора находится океан, то указанные сезонные смещения зон давления невелики и муссоны не получают особого развития. Но, например, над материком Африки распределение давления меняется от января к июлю сильно. Над Сахарой летом господствует пониженное давление, а зимой - отрог азорского антициклона; над Южной Африкой в ее зиму - также антициклон, а летом - депрессия. В связи с этим направление барических градиентов над тропической Африкой от сезона к сезону резко меняется в широкой полосе, что и является здесь причиной муссонов.
Особенно мощные тропические муссоны в бассейне Индийского океана объясняются тем, что сезонные изменения температуры полушарий здесь усилены огромным материком Азии к северу от экватора, прогретым летом и охлажденным зимой. В связи с этим над Южной Азией происходит резкая сезонная смена низкого давления на высокое и обратно с соответствующей муссонной циркуляцией.
На южное полушарие муссоны Индийского океана распространяются меньше; наиболее - в районе северной Австралии, где сезонные изменения температуры материка также сильно влияют на распределение давления, и на западе океана, где муссоны захватывают северный Мадагаскар.
Зимний тропический муссон в бассейне северного Индийского океана принято называть северо-восточным, а летний - юго-западным, имея в виду преобладающие направления у земной поверхности.

Эти направления в основном связаны с отклонением ветра в нижних слоях от зонального направления изобар, вследствие трения. На востоке Китая изобары ближе к меридиональному, чем к зональному направлению и зимой, и летом. Поэтому здесь зимний муссон - северный или северо-западный а летний - южный или юго-восточный в соответствии с барическим полем в этом районе. Преобладание переноса воздуха зимой с материка на океан к летом с океана на материк приводит к важным особенностям погоды и климата тропических муссонов. В типичных условиях (из которых есть исключения) дождливый сезон совпадает с летним муссоном, а резко выраженный сухой сезон приходится на период зимнего муссона. Летние муссонные осадки отчасти связаны с фронтами, возникающими между различными ветвями муссонного течения, отчасти - с подъемом воздуха по орографическим препятствиям, отчасти - с конвекцией.
Заметим еще, что в Индии и Китае под словом "муссон" часто подразумевается только летний муссон.
Долгое время считали бесспорным, что летний муссон есть пассат другого полушария, перетекший экватор и изменивший направление под влиянием изменившегося барического поля и изменившегося направления отклоняющей силы. По-видимому, это правильно для средней части сезона, но не повсюду.

Тропические циклоны, их возникновение и перемещение

Выше упоминалось о циклонической деятельности во внетропических широтах. Подробнее она будет рассмотрена дальше. Но атмосферные возмущения возникают и внутри тропиков. По большей части это слабые тропические депрессии, часто даже без замкнутых изобар, возникающие как волновые возмущения во внутритропической зоне конвергенции (на тропическом фронте), а также на пассатных фронтах. Слабые волновые возмущения возникают и независимо от фронтов, внутри пассатного течения. Перемещаются эти тропические депрессии медленно, преимущественно с востока на запад, в общем направлении переноса воздуха внутри тропиков.

В некоторых редких случаях (примерно в одном из десяти) тропические возмущения усиливаются настолько, что сила ветра в них достигает 20 м/сек и более. Диаметр такого возмущения - порядка нескольких сотен километров. Эти жестокие возмущения со штормовыми или ураганными ветрами носят название тропических циклонов (рис. 99, 100); в зависимости от силы ветра их называют тропическими штормами (скорость ветра 18-33 м/сек) или тропическими ураганами (скорость ветра более 33 м/сек). Районы их возникновения лежат между 20 и 5° широты в каждом полушарии. Ближе 5° широты к экватору тропические циклоны наблюдаются редко, так как отклоняющая сила вращения Земли здесь слишком мала, чтобы могла развиться сильная циклоническая циркуляция: возникающие здесь разности давления должны быстро заполняться. В указанных зонах тропические циклоны развиваются только ,над морем; над сушей они не образуются, а если уже возникший циклон попадает на сушу, он быстро здесь затухает в связи
с увеличенным трением и соответствующим увеличением втока воздуха внутрь циклона в нижних слоях.

Правда, по новейшим данным, полученным с помощью спутников, тропические циклоны Северной Атлантики могут возникать над Африкой; но ветер в них усиливается до шторма или урагана уже над океаном.
Максимум повторяемости тропических циклонов приходится на лето и осень данного полушария, когда зона конвергенции не слишком близка к экватору, а поверхность океана особенно нагрета - не менее чем до +27°. Только в северном Индийском океане среди лета наблюдается вторичный минимум, так как в это время тропический фронт находится над Южной Азией; поэтому циклоны развиваются здесь весной и осенью.
Указанные условия - удаленность зоны конвергенции от экватора при высокой температуре воды - отсутствуют в южном Атлантическом океане и на востоке Тихого океана; тропические циклоны здесь не возникают.
Для развития циклона из первоначальной слабой депрессии нужна большая энергия неустойчивости воздушных масс. Именно неустойчивость стратификации и связанный с нею подъем воздуха, особенно насыщенного, с выделением огромного количества тепла конденсации, определяют кинетическую энергию циклона. Мощный подъем нагретого и влажного воздуха над большой площадью океана в возникшем возмущении является главной причиной развития сильного тропического циклона. Для такого подъема воздуха необходимо еще, чтобы в верхней тропосфере над развивающимся циклоном существовала хорошо выраженная расходимость линий тока. Воздух в циклоне конвергирует и поднимается вверх, а в высоких слоях вытекает из циклона, что поддерживает в нем длительно существующий дефицит давления.
Тропический циклон сначала перемещается в общем с востока на запад, т. е. в направлении общего переноса в тропической зоне. При этом он отклоняется к высоким широтам, т. е., например, в северном полушарии движется к северо-западу. Если он в результате попадает на материк (например, Северной Америки или Азии), оставаясь еще в тропиках, он быстро затухает над сушей, как об этом было сказано выше. Но если циклон достигает широт, близких к тропику (20-30°), оставаясь над океаном, он огибает с запада субтропический антициклон и выходит из тропиков, меняя направление движения с северо-западного на северо-восточное.
Точка траектории, в которой перемещение циклона меняется с северо-западного на северо-восточное, называется точкой поворота. Типичная траектория тропического циклона, перемещающегося сначала внутри тропиков, а затем выходящего во внетропические широты, будет, таким образом, напоминать параболу с вершиной, обращенной к западу. Конечно, в отдельных случаях пути циклонов бывают очень разнообразными.
Скорость перемещения тропических циклонов внутри тропиков мала: всего 10-20 км/час (не следует смешивать ее со скоростями ветра в циклоне!). При выходе циклона во внетропические широты она возрастает до обычных скоростей внетропических циклонов.

Районы возникновения тропических циклонов

Тропические циклоны в основном возникают в следующих районах
В северном полушарии:
1. Желтое море, Филиппинские острова и Тихий океан к востоку от них до 170° в. д. В этом районе наблюдается наибольшее в сравнении с дру гими количество тропических циклонов: в среднем за год 28, из них около половины с ураганной силой ветра в 9-12 баллов.

В отдельные годы их бывает до 50. Тропические циклоны этого района носят местное название тайфунов. Тайфуны движутся вначале на запад и северо-запад. Если они достигают при этом берегов Китая, они быстро затухают над сушей. Но чаще они, не достигнув материка, поворачивают к северо-востоку и при этом нередко (в 15% случаев) проходят через южные Японские острова или вблизи них. Изредка они могут даже достигать района Камчатки.
2. Тихий океан к западу от Мексики. Здесь возникает в среднем за год 6 тропических циклонов со штормовыми и, сравнительно редко, с ураганными ветрами.
3. Тропики северного Атлантического океана, в особенности на западе океана - в Карибском море, в районе Малых Антильских островов и в Мексиканском заливе - и на востоке океана - в районе островов Зеленого Мыса. Местное их название - ураганы. В среднем над северным Атлантическим океаном возникает в год 10 тропических циклонов.
Циклоны западной части океана нередко проходят над Большими Антильскими островами. Сильнейший ураган "Флора" проходил над Кубой в октябре 1963 г. Иногда они попадают на материк в районе Флориды и других юго-восточных штатов США. В других случаях циклоны, поворачивая к северо-востоку над океаном, могут проходить вблизи Атлантического побережья США. Несмотря на сравнительную редкость, ураганы причиняют хозяйству США большие убытки и не обходятся без человеческих жертв.
4. Бенгальский залив. Здесь возникает в среднем за год Ђ циклонов. Попадая на сушу в Индии, они часто производят сильные опустошения; особенно страшны связанные с ними нагоны воды на плоские берега.
5. Аравийское море. Здесь возникает в среднем меньше двух циклонов в год, как и в Бенгальском заливе, - весной и осенью.
В южном полушарии:
1. Тихий океан к востоку от Новой Гвинеи и северной Австралии (Квинсленда) до островов Самоа, а может быть, и дальше. Повторяемость здесь - 7 циклонов в год; циклоны ураганной силы редки.
2. Индийский океан между Мадагаскаром и Маскаренскими островами. Здесь в среднем 7 циклонов в год.
3. Индийский океан между северо-западным побережьем Австралии и Кокосовыми островами. Циклоны здесь очень редки - в среднем 2 в год. Местное название - вили-вили.
В южном Атлантическом океане тропических циклонов штормовой и ураганной силы не возникает.
Всего на Земном шаре возникает за год в среднем около 70 тропических циклонов со штормовыми и ураганными ветрами. Максимум их, как правило, приходится на лето и осень данного полушария, когда тропический фронт наиболее далеко смещен от экватора. Зимой их почти не бывает.

Погода в тропическом циклоне

Вполне сформировавшийся тропический циклон представляет собой округлую, слегка растянутую область пониженного давления диаметром в несколько сотен километров (до 1000 км). При этом давление в центре циклона нередко падает, так же как и в глубоких циклонах внетропических широт, до 960- 970 мб (рис. 101). В отдельных случаях наблюдались рекордные падения до 885 мб, каких во внетропических широтах не бывает. Вследствие малой площади и большой глубины циклона барические градиенты и скорости ветра в нем очень велики: максимальные градиенты доходят до 15 мб на градус, а в отдельных случаях и гораздо больше. Скорости ветра достигают 30-50 м/сек. Наблюдались скорости до 65 м/сек, но, судя по разрушениям, они могут быть и больше; отдельные же порывы доходят до 100 м/сек. Эта область больших градиентов и штормовых ветров резко отграничена от окружающего района с размытым барическим полем и слабыми ветрами.

Циклоническая циркуляция во всяком случае захватывает нижнюю половину тропосферы, но, по-видимому, часто простирается и в верхнюю половину. В тайфуне "Сара" в марте 1956 г. циклоническая циркуляция наблюдалась до 12 км.
Облачность в тропическом циклоне представляет собой почти сплошное гигантское грозовое облако; выпадают сильные ливневые осадки; грозовые явления достигают большой интенсивности. В самом центре циклона обычно находится небольшая зона (десятки километров в диаметре), свободная от мощных облаков и со слабыми ветрами, - так называемый глаз бури, или глаз циклона (рис. 102). Сильные восходящие движения, господствующие в большей части тропического циклона, уступают в этой области место нисходящему движению воздуха, удаляющему его от конденсации. Облака циклона окружают "глаз" в виде амфитеатра огромного стадиона. В одном тайфуне облака вокруг "глаза" возвышались до 14 км.
Температура воздуха в тропическом циклоне вообще повышена по сравнению с окружающей атмосферой в связи с выделением огромного количества скрытого тепла при конденсации.
Распределение температуры равномерно и симметрично относительно центра, а вертикальная стратификация очень неустойчива. В глазе бури, однако, наблюдаются еще более высокие температуры, связанные с нисходящими движениями воздуха, и устойчивая стратификация атмосферы. В начале развития тропического циклона в нем можно обнаружить термическую асимметрию, являющуюся следствием того, что циклон возник на границе двух воздушных масс, на фронте. Но в последующем развитии эта асимметрия выравнивается штормовыми ветрами циклона.

При своем продвижении тропический циклон вызывает сильнейшее волнение в море, угрожающее катастрофой мелким судам, а то и большим Плоские берега, вблизи которых он проходит, иногда затапливаются гигантскими волнами, до 10-15 м высотою, в Индии это приводило к огромным разрушениям и человеческим жертвам (1 января 1876 г. погибло 250 тысяч человек).
Задевая сушу, тропический циклон может привести к опустошению многочисленных селений и целых городов ураганными ветрами и наводнениями, как это было, например, с Майами, во Флориде, в 1923 г. и часто случается в Южной Японии. Тайфун "Вера" в 1959 г., со скоростями ветра до 90 м/сек, оставил без крова более полутора миллионов жителей Японии. Только один тропический циклон, отнюдь не исключительной силы ("Одри"), захватив прибрежную зону Техаса и Луизианы 27 ноября 1957 г., причинил убытки в 150-200 миллионов долларов и унес около 400 человеческих жизней. Но иногда (раз в 10 лет) ущерб от одного тропического циклона в США достигает 1 миллиарда долларов; в одном случае ущерб достиг даже 2 миллиардов долларов.
В начале октября 1963 г. ураган "Флора" менял свое направление движения как раз над Кубой и задержался над островом на несколько суток. Восточные провинции Кубы были опустошены, было свыше 3000 человеческих жертв, главным образом в результате наводнения. Общие убытки на всех островах, попавших под влияние "Флоры", составили полмиллиарда долларов.
Перейдя в умеренные широты и изменив направление перемещения, тропический циклон расширяется по площади; градиенты в нем становятся меньше и ветры слабее. Внедрение в его область полярного фронта приводит к появлению в нем температурного контраста между тропическим воздухом и вновь вошедшим в область циклона полярным воздухом. Циклон более или менее принимает характер внетропического циклона и в таком виде может проникнуть иногда в довольно высокие широты (вплоть до Исландии и Камчатки).
Прослеживание тропических циклонов и предупреждение о них представляет важную задачу для службы погоды на Дальнем Востоке (особенно на Филиппинских островах), в США и других районах, подверженных тропическим циклонам. Вместе с тем прогноз тропических циклонов затруднен тем, что проходят они преимущественно над морями, а самые очаги их возникновения, во всяком случае, лежат на морях. Большие успехи достигнуты в последние десятилетия, когда для прослеживания тропических циклонов стали применять радиолокацию. Производится также регулярное самолетное прослеживание и исследование тропических циклонов. В последнее время важную информацию о них дают метеорологические спутники.

Внетропическая циркуляция

Выше сказано, что во внетропических широтах преобладает западный перенос воздуха, особенно хорошо выраженный в верхней тропосфере. Однако воздушные течения меняются в этих широтах часто и быстро в связи с циклонической деятельностью, и преобладающий западный перенос представляет собой только статистический результат совокупного действия возникающих здесь атмосферных возмущений.
Основной особенностью атмосферной циркуляции во внетропических и особенно в средних широтах является именно интенсивная циклоническая деятельность. Циклонической деятельностью называют постоянное возникновение, развитие и перемещение в атмосфере внетропических широт крупномасштабных атмосферных возмущений с пониженным и повышенным давлением - циклонов и антициклонов. Все воздушные течения крупного масштаба связаны во внетропических широтах с этими атмосферными возмущениями.
Выше были рассмотрены основные особенности распределения давления и ветра в циклонах и антициклонах у земной поверхности и в высоких слоях. Конечно, действительные условия в атмосфере много сложнее, чем рассмотренные здесь схемы. Так, например, изобары циклонов и антициклонов у земной поверхности в общем имеют округлую или овальную форму, но все же не являются правильными кривыми. Барические градиенты, скорости ветра, углы отклонения ветра от градиента различны в разных циклонах; в одном и том же циклоне в разных стадиях его развития; наконец, в разных частях одного и того же циклона. Однако те общие положения, которые были нами изложены, применимы ко всякому циклону или антициклону.

Внетропические циклоны

В течение года во внетропических широтах каждого полушария возникают многие сотни циклонов. Размеры внетропических циклонов весьма значительны. Хорошо развитый циклон может иметь в поперечнике 2-3 тыс. км. Это значит, что он может одновременно покрывать несколько западноевропейских стран и определять режим погоды на этой огромной территории.
Вертикальное распространение (вертикальная мощность) циклона меняется по мере его развития. В первое время циклон заметно выражен лишь в нижней части тропосферы. Распределение температуры в первой стадии жизни циклона, как правило, асимметрично относительно центра. В передней части циклона, с притоком воздуха из низких широт, температуры повышены; в тыловой, с притоком воздуха из высоких широт, напротив, понижены. Поэтому с высотой изобары циклона размыкаются, как об этом уже говорилось в главе шестой: над теплой передней частью на высотах обнаруживается гребень повышенного давления, а над холодной тыловой - ложбина пониженного давления. С высотой это волнообразное искривление изобар или изогипс все более сглаживается.
Но при последующем развитии циклон становится высоким, т. е. замкнутые изобары обнаруживаются в нем и в верхней половине тропосферы. При этом температура воздуха в циклоне в общем понижается, а температурный контраст между передней и тыловой частью более или менее сглаживается: высокий циклон является в общем холодной областью тропосферы. Возможно и проникновение циклона в стратосферу.
Тропопауза над хорошо развитым циклоном прогнута вниз в виде воронки; сначала это понижение тропопаузы наблюдается над холодной тыловой (западной) частью циклона, а потом, когда циклон становится холодным во всей своей области, снижение тропопаузы наблюдается над всем циклоном. Температура нижней стратосферы над циклоном при этом повышена. Таким образом, в хорошо развитом высоком циклоне наблюдается над холодной тропосферой низко начинающаяся теплая стратосфера.
Температурные контрасты в области циклона объясняются тем, что циклон возникает и развивается на главном фронте (полярном или арктическом) между воздушными массами разной температуры. В циклоническую циркуляцию втягиваются обе эти массы.
В дальнейшем развитии циклона теплый воздух оттесняется в верхнюю части тропосферы, над холодным воздухом, и сам подвергается там радиационному выхолаживанию. Горизонтальное распределение температуры в циклоне становится более равномерным, и циклон начинает затухать.
Давление в центре циклона (глубина циклона) в начале его развития, конечно, ненамного отличается от среднего: это может быть, например, 1000-1010 мб. Многие циклоны и не углубляются более чем до 1000-990 мб. Сравнительно редко глубина циклона достигает 970 мб. Однако в особенно глубоких циклонах давление понижается до 960-950 мб, а в отдельных случаях наблюдалось и 930-940 мб (на уровне моря) с минимумом 925 мб в северном и 923 мб в южном полушарии. Наиболее глубокие циклоны наблюдаются в высоких широтах. Над Беринговым морем, например, в одной трети всех случаев глубина циклонов зимой от 961 до 980 мб.
Вместе с углублением циклона растут и занимаемая им площадь, и барические градиенты, и скорости ветра в нем. Ветры в глубоких циклонах сильные и иногда достигают штормовых скоростей на больших территориях. В циклонах южного полушария это бывает особенно часто. Отдельные порывы ветра в циклонах могут достигать 60 м/сек, как это было 12 декабря 1957 г. на Курильских островах. Как выглядит циклон на синоптической карте, показано на рис. 103.
Жизнь циклона продолжается вообще несколько суток. В первой половине своего существования циклон углубляется, во второй - заполняется и, наконец, исчезает вовсе (затухает). В некоторых случаях существование циклона оказывается длительным, особенно если он объединяется с другими циклонами, образуя одну общую глубокую, обширную и малоподвижную область низкого давления, так называемый центральный циклон.

Центральные циклоны в северном полушарии чаще всего образуются в северных частях Атлантического и Тихого океанов. На климатологических картах в этих районах отмечаются известные центры действия - исландская и алеутская депрессии.
Уже заполнившись в нижних слоях, циклон может еще некоторое время сохраняться в холодном воздухе верхних слоев тропосферы в виде высотного циклона.

Перемещение внетропических циклонов

Циклоны всегда перемещаются. Под перемещением мы подразумеваем перемещение циклона как целого, независимо от дующих в нем ветров, которые в разных частях циклона имеют разные скорости и направления. Перемещение циклона как единой системы характеризуется перемещением его центра.
Циклоны перемещаются в направлении общего переноса воздуха в средней и верхней тропосфере (говорят еще: в направлении ведущего потока). Такой общий перенос воздуха чаще всего происходит с запада на восток. Поэтому и циклоны чаще всего перемещаются от западной половины горизонта к восточной.
Но бывает и так, что высокие малоподвижные циклоны и антициклоны, простирающиеся на всю толщу тропосферы, располагаются таким образом, что изобары и течения на высотах отклоняются от зонального направления. Тогда и подвижные циклоны, следуя этому незональному верхнему переносу, перемещаются с большой составляющей к югу или к северу. В редких случаях направление ведущего потока бывает даже восточным; тогда и циклон перемещается аномально, с востока на запад.
В отдельных случаях пути циклонов оказываются очень разнообразными и даже типовые пути над той или иной областью представляют собой довольно сложную картину. Но в среднем циклоны движутся с запада на восток с составляющей, направленной к высоким широтам. Поэтому наиболее глубокие циклоны наблюдаются, как сказано выше, в субполярных широтах: в северном полушарии - на севере Атлантического и Тихого океанов, в южном полушарии - вблизи материка Антарктиды.
Скорость перемещения циклона на 25-35% меньше скорости ведущего потока. В среднем она имеет порядок величины 30-40 км/час. В отдельных случаях она может быть до 80 км/час и более. В поздней стадии жизни циклона, когда он уже заполняется, скорость перемещения уменьшается, иногда очень резко.
Хотя скорости циклонов и невелики, но за несколько суток своего существования циклон может переместиться на значительное расстояние, порядка нескольких тысяч километров, меняя по пути режим погоды.
При прохождении циклона усиливается ветер и меняется его направление. Если циклон проходит через данное место своей южной частью, ветер меняется с южного на юго-западный и северо-западный. Если циклон проходит своей северной частью, ветер меняется с юго-восточного на восточный, северо-восточный и северный. Таким образом, в передней (восточной) части циклона наблюдаются ветры с южной составляющей, в тыловой (западной) части - с северной составляющей. С этим связаны и колебания температуры при прохождении циклона.
Наконец, циклонические области характеризуются увеличенной облачностью и осадками. В передней части циклона осадки обложные, восходящего скольжения, выпадающие из облаков теплого фронта или фронта окклюзии. В тыловой части осадки ливневые, из кучево-дождевых облаков, свойственные холодному фронту, но главным образом холодным воздушным массам, текущим в тылу циклона к низким широтам. В южной части циклона иногда наблюдаются моросящие осадки теплой воздушной массы.
Приближение циклона часто можно заметить по падению давления и по первым облакам, появляющимся на западном горизонте. Это фронтальные перистые облака, движущиеся параллельными полосами. На взгляд, вследствие перспективы эти полосы кажутся расходящимися от горизонта. За ними идут перисто-слоистые облака, затем более плотные высоко-слоистые и, наконец, слоисто-дождевые с сопровождающими их разорванно-дождевыми. Потом, в тылу циклона, давление растет, а облачность принимает быстро меняющийся характер: кучевые и кучево-дождевые облака часто сменяются прояснениями.

Антициклоны

Между циклонами возникают и развиваются подвижные антициклоны. Их размеры и скорости движения примерно такие же; но в поздней стадии развития (рис. 104) антициклоны еще чаще, чем циклоны, принимают малоподвижное состояние и могут сохраняться в нем по много дней. Направление движения также в основном определяется направлением ведущего потока. Однако, в отличие от циклонов, в перемещении антициклонов преобладает составляющая, направленная к низким широтам (об этом уже говорилось выше). Поэтому происходит накопление антициклонов в субтропических и тропических широтах, отражающееся на климатологических картах (субтропические зоны высокого давления). Зимой также происходит преимущественное развитие, накопление и усиление антициклонов над охлажденными материками умеренных широт, особенно над Азией.

В антициклонах фронтов нет и существует общая тенденция к нисходящему движению воздуха, связанная с противоградиентным вытеканием его в слое трения от периферии к центру. По мере развития антициклона мощные слои воздуха в нем медленно "оседают", что приводит к их динамическому нагреванию и возникновению инверсий температуры. В связи с этим воздух удаляется от насыщения, и погода в антициклонах преобладает малооблачная и сухая. Только в нижних слоях в холодное время суток и года возможно образование туманов и низких слоистых облаков, связанных с охлаждением от земной поверхности. Возможно также образование волнистых облаков в более высоких слоях, под инверсиями. Но мощных облачных систем фронтального происхождения с выпадением обложных осадков в антициклонах не бывает.
С течением времени температура воздуха в тропосфере антициклона становится все выше; хорошо развитый высокий антициклон является теплой областью тропосферы. Исключением являются нижние слои антициклона зимой над сушей. При ясной погоде в антициклоне земная поверхность будет в это время года сильно выхолаживаться излучением, а от нее будут выхолаживаться и прилегающие к ней слои воздуха.
Тропопауза над высоким антициклоном приподнята в виде купола на 2 км и более в сравнении со средним ее положением, а температура нижней стратосферы понижена. Таким образом, теплой тропосфере в высоком антициклоне соответствует высоко начинающаяся холодная стратосфера.
Барические градиенты и ветры во внутренних частях антициклонов слабы; у земной поверхности нередки штили. Но на периферии антициклона ветры могут быть достаточно сильными.

Возникновение внетропических возмущений

Синоптические карты показывают, что атмосферные возмущения внетропических широт возникают преимущественно на главных фронтах тропосферы, т. е. на фронтах между полярным (умеренным) и тропическим воздухом или между арктическим и полярным воздухом. Лишь незначительная часть циклонов и антициклонов, притом слаборазвитых и малоподвижных, возникает под непосредственным тепловым влиянием подстилающей поверхности, как, например, циклоны летом над пустынями Средней Азии. В большинстве случаев влияние подстилающей поверхности является только дополнительным при развитии атмосферных возмущений; само же их возникновение связано с наличием в тропосфере главных фронтов.
Этот процесс можно рассматривать как возникновение на поверхности главного фронта огромных волн, с длинами порядка 1000 км и более. В возникновении таких волн играют роль как разрыв температуры и ветра на фронте, так и отклоняющее действие вращения Земли на воздушные течения. Воздушные частицы по обе стороны фронта испытывают колебательное движение, распространяющееся вдоль фронта в виде волны. На главном фронте, протяжением в несколько тысяч километров, возникает обычно несколько волн, перемещающихся по фронту чаще всего с запада на восток. При этом, конечно, и сама поверхность фронта, и линия фронта на земной поверхности испытывают волнообразные деформации. На одних участках - в гребнях волн - фронт продвигается к низким широтам, на других - в долинах фронтальных волн - к высоким широтам. Воздушные течения вдоль фронта теряют зональный характер - возникают языки холодного и теплого воздуха.
При этом в долинах фронтальных волн развивается циклоническое движение и давление падает: образуются циклоны. Центр каждого циклона лежит на фронте; фронт, таким образом, проходит через внутреннюю часть циклона (рис. 105). В передней части циклона фронт продвигается к высоким широтам и имеет здесь характер теплого фронта. В тыловой части циклона фронт продвигается к низким широтам и имеет здесь характер холодного фронта. Тот и другой являются участками единого главного фронта. Соответственно возникают в циклоне и системы облаков и осадков, свойственные фронтам.
Сами фронты в циклоне обостряются вследствие существующей там сходимости воздушных течений. Язык теплого воздуха в циклоне, между теплым и холодным фронтом, носит название теплого сектора циклона. В нем наблюдаются в циклоне > самые высокие температуры у земной поверхности. Циклон в этой стадии развития - с теплым сектором - называется молодым циклоном; с течением времени он углубляется, т. е. давление в его центре падает. Сам циклон перемещается по фронту обычно в восточном направлении. При этом холодный фронт в области циклона постепенно нагоняет медленнее перемещающийся теплый фронт и, наконец, смыкается с ним. Происходит так называемая окклюзия циклона. В окклюдированном циклоне теплого сектора у земной поверхности уже нет - теплый воздух теперь оттеснен холодным воздухом в верхнюю часть тропосферы, где он охлаждается путем излучения, а сам циклон становится холодным и высоким. Скорость его перемещения убывает, а давление в центре начинает повышаться - начинается затухание циклона.
Большинство циклонов развивается на полярных фронтах. При этом воздух теплого сектора в молодом циклоне будет тропическим воздухом, а остальная часть циклона занята полярным (умеренным) воздухом. Но сходным образом развиваются циклоны и на арктических фронтах; в них теплый сектор образован уже полярным воздухом.

Дальше для простоты изложения мы будем говорить только о полярнофронтовых циклонах.
На каждом полярном фронте возникает обычно не единичный циклон, а серия циклонов из нескольких членов, перемещающихся вдоль фронта один за другим. Вследствие уменьшения скорости перемещения после окклюзии циклоны серии обычно нагоняют друг друга и могут, в конце концов, объединиться в одну обширную высокую и малоподвижную депрессию - уже упоминавшийся центральный циклон. Так как циклоны движутся с составляющими, направленными к высоким широтам, центральный циклон образуется в довольно высоких широтах, субполярных или близких к субполярным. Обычная продолжительность существования серии циклонов около недели, но центральный циклон может существовать и дольше.3. Между циклонами серии, в гребнях фронтальных волн, образуются промежуточные антициклоны, перемещающиеся вместе с циклонами, обычно уклоняясь к низким широтам. Эти промежуточные антициклоны довольно слабы; часто они даже не имеют замкнутых изобар, а являются только гребнями большого субтропического антициклона, по периферии которого располагается полярный фронт. Центр каждого такого антициклона (или ось гребня) у земной поверхности лежит не на фронте, а внутри холодного языка.

Таким образом, фронт через приземный центр антициклона не проходит, он располагается на южной периферии антициклона. Это, вместе с оседанием воздуха, создает известную типичную погоду антициклона -малооблачную и сухую.
К северу или к северо-западу от серии циклонов в полярном воздухе развивается более обширный и интенсивный антициклон, так называемый заключительный. Смещаясь в юго-восточном направлении, он, наконец, достигает субтропиков, где превращается в субтропический антициклон. На этом обрывается деятельность серии циклонов.

Роль серии циклонов в междуширотном обмене воздуха

При сильном развитии циклонов на фронте воздушные массы, как и разделяющий их фронт, далеко отклоняются от первоначального положения и больше к нему не возвращаются. В тылу каждого циклона серии холодный полярный воздух проникает все дальше в низкие широты. А заключительный антициклон, дает уже мощное вторжение полярного воздуха в субтропическую зону. Полярный воздух при этом прогревается как от земной поверхности, так и благодаря нисходящим движениям в антициклоне и трансформируется в тропический воздух. Сам же заключительный антициклон становится при этом высоким и теплым субтропическим антициклоном.
В то же время тропический воздух продвигается в передних частях развивающихся циклонов в высокие широты. Правда, он не проникает далеко в теплых секторах у земной поверхности. В процессе окклюзии циклонов он оттесняется от земной поверхности в верхнюю тропосферу, как об этом уже говорилось. Но там он продолжает свое продвижение к высоким широтам, проникая особенно далеко в центральном циклоне. При этом он охлаждается и, в конце концов, трансформируется в полярный воздух.
Таким образом, при посредстве циклонов и антициклонов происходит обмен воздуха между низкими и высокими широтами Земли.

Энергия циклона

При развитии циклонов скорости ветра в них возрастают; следовательно, выделяется большое количество кинетической энергии. Откуда берется эта энергия?
Лишь отчасти это та кинетическая энергия, которую воздушные течения имели еще до циклонообразования. В большей мере кинетическая энергия циклона возникает заново за счет потенциальной энергии положения воздушных масс, разделяемых фронтом, на котором происходит циклонообразование. В циклоне происходят изменения взаимного положения воздушных масс. В начале развития циклона массы теплого и холодного воздуха лежат у земной поверхности бок о бок; они разделяются наклонной поверхностью фронта. В результате эволюции циклона теплый воздух оттесняется от земной поверхности после окклюзии и оказывается весь над холодным воздухом. При этом перераспределении воздушных масс в циклоне общий центр тяжести системы двух воздушных масс понижается и, стало быть, потенциальная энергия системы убывает, а за счет ее растет кинетическая энергия. Кроме того, одновременно с переходом потенциальной энергии положения в кинетическую энергию происходит переход и внутренней энергии воздушных масс в кинетическую энергию: скорость ветра растет за счет понижения температуры воздушных масс в циклоне. Можно сказать, что основным условием прироста кинетической энергии циклона является температурный контраст воздушных масс на фронте: именно он определяет потенциальную энергию системы двух воздушных масс в циклоне. Известную роль, особенно значительную летом, играет также освобождение энергии неустойчивости вертикальной стратификации воздушных масс при восхождении воздуха в циклоне (включая освобождение скрытого тепла). Мы уже говорили, что в тропических циклонах это основной источник энергии.

Типы атмосферной циркуляции во внетропических широтах

В зависимости от непериодически меняющихся особенностей циклонической деятельности в каждом сезоне года можно различать во внетропических широтах разные типы, атмосферной циркуляции. Такие типы циркуляции можно выделить как для определенных секторов Земного шара, так и для целого полушария. Не останавливаясь на многочисленных работах в этом направлении, укажем здесь только на самое основное разделение: на зональный (широтный) и меридиональный типы циркуляции.
При зональном типе циркуляции над значительной частью полушария или даже над всем полушарием господствует хорошо выраженный западный перенос воздуха. Это значит, что в крупномасштабном распределении давления высокое давление занимает низкие широты, а низкое давление - высокие широты. Общий перенос воздуха идет при этом с запада на восток; в этом же направлении достаточно быстро перемещаются и подвижные циклоны и антициклоны. На высотных картах барической топографии изогипсы в этом типе циркуляции проходят в общем зонально, с запада на восток. Они обнаруживают при этом волнообразные колебания соответственно прохождению подвижных циклонов и антициклонов у земной поверхности. Эти волны давления также перемещаются с запада на восток, и амплитуды их сравнительно невелики. Вторжения холодного воздуха в низкие широты в тыловых частях циклонов непродолжительны и не проникают далеко; поэтому междуширотный обмен тепла ослаблен.
При меридиональном типе циркуляции во внетропических широтах имеются интенсивные высокие и малоподвижные циклоны и антициклоны, расположенные бок о бок. Это описанные выше холодные центральные циклоны и теплые так называемые блокирующие антициклоны.

Они простираются до больших высот; поэтому западный перенос воздуха в тропосфере нарушается.
В верхней тропосфере на картах барической топографии в этом типе циркуляции мы находим малоподвижные волны давления с большой амплитудой; изогипсы образуют хорошо выраженные обширные ложбины, простирающиеся в низкие широты, и гребни, простирающиеся в высокие широты. Поэтому даже в высоких слоях тропосферы воздушные течения приобретают большие меридиональные составляющие. В передних частях циклонов и в тыловых частях антициклонов устанавливаются мощные воздушные течения, направленные из низких широт в высокие, а в тыловых частях циклонов и в передних частях антициклонов, наоборот, - из высоких широт в низкие. Обмен воздуха и тепла между высокими и низкими широтами Земли происходит в этом типе интенсивнее, чем в зональном типе.

Зональный тип циркуляции в Европе связан с адвекцией воздуха с Атлантического океана и, следовательно, с теплой погодой зимою и прохладной летом и с циклоническими осадками в северной половине Европы. Меридиональный тип связан с глубокими проникновениями холодных масс арктического воздуха к югу и, напротив, теплых масс воздуха из субтропиков в высокие широты.
Каждый из описанных, типов циркуляции обычно господствует над более или менее значительной частью полушария, иногда почти над всем полушарием. Вследствие особенностей механизма циклонической деятельности оба типа переходят один в другой, т. е. в течение года много раз сменяются.
В южном полушарии широтный тип циркуляции наблюдается чаще и в большей степени преобладает над меридиональным типом, чем в северном полушарии. Это объясняется более однородной океанической подстилающей поверхностью южного полушария.
Как зональный, так и меридиональный типы циркуляции проявляются с разной степенью интенсивности в разных секторах Земли. Для числового выражения зональности или меридиональной циркуляции применяются различные цифровые показатели, так называемые индексы циркуляции. Простейший из них - это разность величин давления между двумя широтами, например 30-й и 60-й (осредненных по отрезкам широтных кругов). Чем больше эта разность, тем больше средний меридиональный барический' градиент между указанными широтами и тем больше интенсивность зонального переноса воздуха. Можно взять в качестве зонального индекса непосредственно среднюю величину зональной составляющей геострофического ветра.

Внетропические муссоны

На климатологических картах видно, что над материками внетропических широт зимний режим повышенного давления сменяется летним режимом пониженного давления. Кроме того, субтропические антициклоны над океанами северного полушария перемещаются от января к июлю с юга на север и от июля к январю - обратно, а субполярные депрессии над океанами от зимы к лету ослабевают. Все это может привести к тому, что в некоторых районах внетропических широт преобладающие барические градиенты резко меняют свое направление от зимы к лету.
Там, где распределение давления в течение сезона обладает достаточной устойчивостью и где оно резко меняется от сезона к сезону, сходные изменения должны происходить и в режиме ветра. В одном сезоне ветры определенного направления (квадранта или октанта горизонта) будут преобладать над ветрами всех других направлений. В противоположном сезоне преобладающее направление сменится на противоположное или близкое к противоположному. Такой режим ветра и называется внетропическими муссонами; в основном они сходны с описанными выше тропическими муссонами.
Муссонный режим ветра во внетропических широтах, как и в тропических, не ограничивается нижним слоем воздуха, а захватывает значительную толщу тропосферы. Еще выше господствует общий, в основном западный, перенос воздуха.
Внетропические муссоны особенно хорошо выражены на востоке России и северо-востоке Китая и над прилегающими морями. Зимою над Восточной Азией держатся устойчивые антициклоны, а над морем возникают одна за другой серии циклонов. Воздушные течения над восточной окраиной Азии имеют в это время преимущественное направление с севера или северо-запада в соответствии с барическим полем. Это - зимний муссон. В ряде районов он создает вынос воздуха в нижних слоях атмосферы через береговую линию с суши на море.
Летом над Азией преобладает пониженное давление, а над прилегающими морями давление повышено; отсюда устанавливается преобладание над Дальним Востоком южных и юго-восточных течений с моря - летнего муссона. Внетропические муссоны северо-восточного Китая в более южных широтах переходят в тропические муссоны юго-западного Китая.
Сходные, но не столь резко выраженные условия на менее обширных площадях наблюдаются и в некоторых других районах внетропических широт.
Если зимний муссон имеет составляющую с суши на море (в некоторых районах этого может и не быть), он связан с холодной сухой погодой в полосе, охваченной муссонной циркуляцией. Если летний муссон направлен с моря на сушу (что тоже не строго обязательно), он связан с понижением температуры и значительными осадками в муссонном районе. Эти осадки преимущественно циклонические и, в меньшей степени, конвективные или орографические. Конечно, в любом муссонном районе в каждый сезон, кроме ветров преобладающего направления, могут (правда, реже) наблюдаться ветры и других направлений.
Не нужно думать, что внетропические муссоны связаны с неизменным наличием над тем или иным районом летом циклона, зимой антициклона или наоборот. Мы неоднократно отмечали, что такой неизменности в природе не существует. В действительности в муссонных районах имеется преобладание одних барических систем над другими. Например, при режиме зимнего муссона над Восточной Азией в течение зимы сменяется целый ряд антициклонов и более или менее регулярно антициклон частично или полностью "сползает" с материка на океан. В такие периоды, естественно, происходит перебой в режиме муссона.

Местные ветры

Под местными ветрами понимают ветры, характерные только для определенных географических районов. Происхождение их различно.
Во-первых, местные ветры могут быть проявлением местных циркуляции, независимых от общей циркуляции атмосферы, налагающихся на нее. Таковы, например, бризы по берегам морей и больших озер. Различия в нагревании берега и воды днем и ночью создают вдоль береговой линии местную циркуляцию. При этом в приземных слоях атмосферы ветер дует днем с моря на более нагретую сушу, а ночью, наоборот, с охлажденной суши на море. Характер местной циркуляции имеют также горно-долинные ветры. Подробнее см. дальше.
Во-вторых, местные ветры могут представлять собой местные изменения (возмущения) течений общей циркуляции атмосферы под влиянием орографии или топографии местности. Таков, например, фен - теплый ветер, дующий по горным склонам в долины, когда течение общей циркуляции переваливает горный хребет. Нисходящее движение фена, связанное с повышением температуры воздуха, является следствием именно влияния хребта на общециркуляционное течение. Влиянием орографии объясняется и бора с различными ее разновидностями.
Рельеф местности может создавать также усиление ветров в некоторых районах до скоростей, значительно превышающих скорости в соседних районах. Такие локально усиленные ветры того или иного направления также известны в разных районах под разными названиями как местные ветры. Иногда особые свойства придает местному ветру прохождение воздуха над сильно нагретой и сухой поверхностью, например пустыни, или, напротив, над сильно испаряющей (водной) поверхностью.
В-третьих, местными ветрами называют и такие сильные или обладающие особыми свойствами ветры в некотором районе, которые, по существу, являются течениями общей циркуляции. Интенсивность их проявления и их характерность для данного географического района являются следствием самого механизма общей циркуляции, самого географического распределения синоптических процессов. В этом значении называют местным ветром, например, сирокко на Средиземном море.
Кроме сирокко, известны многочисленные местные ветры в различных местах Земли, носящие особые названия, такие, как самум, хамсин, афганец и пр. Упоминания о таких ветрах можно найти в физико-географических или климатических характеристиках отдельных местностей.

Бризы

Бризами называют ветры у береговой линии морей и больших озер, имеющие резкую суточную смену направления. Днем морской бриз дует в нескольких нижних сотнях метров (иногда в слое более километра) в направлении на берег, а ночью береговой бриз дует с берега на море. Скорость ветра при бризах - порядка 3-5 м/сек, в тропиках и больше. Бризы выражены отчетливо в тех случаях, когда погода ясная и общий перенос воздуха слаб, как это бывает, например, во внутренних частях антициклонов. В противном случае общий перенос воздуха в определенном направлении маскирует бризы, как это всегда бывает при прохождении циклонов.
Особенно хорошо выраженная бризовая циркуляция наблюдается в субтропических антициклонах, например на побережьях пустынь, где суточные смены температуры над сушей велики, а общие барические градиенты малы.

Но хорошо развитые бризы наблюдаются в теплое время года (с апреля по сентябрь) и на таких морях средних широт, как Черное, Азовское, Каспийское.
Бризы связаны с суточным ходом температуры поверхности суши. Днем суша нагрета и температура ее поверхности выше, чем поверхности моря. Поэтому изобарические поверхности над сушей несколько приподнимаются сравнительно с морем на какой-то высоте создается горизонтальный барический градиент, направленный в сторону моря, и начинается отток воздуха в направлении к морю. Так как движение развивается в течение короткого времени, то отклоняющая сила вращения Земли не может уравновесить барический градиент; движение остается неустановившимся и направлено не по изобарам, а пересекая их, т. е. не параллельно береговой линии, а с большой составляющей в направлении с суши на море. Такой отток воздуха на высоте приводит к падению давления у земной поверхности над сушей и к росту его над морем. Поэтому нижние изобарические поверхности приобретают обратный наклон - внизу устанавливается барический градиент, направленный с моря на сушу, а с ним и соответствующий перенос воздуха в нижнем слое. Этот нижний перенос воздуха и есть дневной морской бриз.
Обратные условия будут ночью, когда суша охлаждается и становится холоднее море. Тогда создается внизу перенос воздуха с берега на море - ночной береговой бриз, а над ним обратное течение. Вечером и утром происходит смена морского бриза на береговой и обратно. Конечно, общий перенос воздуха может существенно исказить правильную картину бризов.
Бризы захватывают слой в несколько сотен метров, до 1- 2 км; дневной бриз наблюдается в более мощном слое, чем ночной. Обратный перенос над бризом также имеет мощность 1,5-2 км. В тропиках мощность бризов больше, чем в высоких широтах. От береговой линии бризы распространяются в глубь суши или моря на десятки километров.
Вторжение морского бриза на сушу имеет общие черты с вторжением холодного фронта.
Дневной бриз несколько понижает температуру над сушей и увеличивает относительную влажность; особенно резко это выражено в тропиках. В Мадрасе (Индия) морской бриз понижает температуру воздуха на побережье на 2-3° и повышает влажность на 10-20%. В Западной Африке эффект значительно больше: морской бриз, приходя на смену нагретому континентальному воздуху, может снизить температуру на 10° и более и повысить относительную влажность на 40% и более.
Очень сильный климатический эффект производит морской бриз, дующий с большой регулярностью над районом Сан-Франциского залива. Так как морской воздух приходит на сушу с вод холодного Калифорнийского течения, то средние температуры летних месяцев в Сан-Франциско оказываются на 5-7° ниже, чем в Лос-Анжелесе, расположенном всего на 4° широты южнее. Зимние температуры в Сан-Франциско ниже на 2-3°.
Бризы наблюдаются в ряде случаев также и на побережьях озер, таких, как Севан, Иссык-Куль, Ладожское, Онежское, а также и на больших реках, например в низовьях Волги. Но здесь явление бриза имеет уже микроклиматический масштаб: скорости ветра при бризе, его вертикальная мощность и горизонтальное распространение значительно меньше, чем при; бризах на берегах морей.

Горно-долинные ветры

В горных системах наблюдаются ветры с суточной периодичностью, схожие с бризами. Это - горно-долинные ветры. Днем долинный ветер дует из горла долины вверх по долине, а также вверх по горным склонам. Ночью горный ветер дует вниз по склонам и вниз по долине, в сторону равнины. Горно-долинные ветры хорошо выражены во многих долинах и котловинах Альп, Кавказа, Памира и в других горных странах, главным образом в теплое полугодие. Вертикальная мощность их значительна и измеряется километрами: ветры заполняют все поперечное сечение долины, вплоть до гребней ее боковых хребтов. Как правило, они не сильны, но иногда достигают 10 м/сек и более.
Можно различать по крайней мере две независимо действующие причины возникновения горно-долинных ветров. Одна из этих причин создает дневной подъем или ночное опускание воздуха по горным склонам - ветры склонов. Другая создает общий перенос воздуха вверх по долине днем и вниз ночью - горно-долинные ветры в тесном смысле слова.

Сначала о ветрах склонов. Днем склоны гор нагреты сильнее воздуха; поэтому воздух в непосредственной близости к склону нагревается сильнее, чем воздух, расположенный дальше от склона, и в атмосфере устанавливается горизонтальный градиент температуры, направленный от склона в свободную атмосферу. Более теплый воздух у склона начинает подниматься по склону вверх, как при конвекции в свободной атмосфере. Такой подъем воздуха по склонам приводит к усиленному образованию на них облаков. Ночью, при охлаждении склонов, условия меняются на обратные и воздух стекает по склонам вниз.
К этим ветрам склонов присоединяется перенос воздуха в более крупном масштабе между долиной в целом и прилегающей равниной. Днем температура воздуха в долине в целом выше, чем на соответствующих уровнях над равниной, так как на нее влияют прогретые склоны гор. Поэтому аналогично тому, как над берегом при морском бризе, давление в долине становится до самого гребня хребта ниже, чем над равниной, а на больших высотах - выше. В результате днем ниже уровня гребня устанавливается поток воздуха с равнины в долину, а выше - обратный перенос. Ночью воздух в долине холоднее, чем над равниной, и внутри долины устанавливается более высокое давление; возникают барические градиенты, создающие перенос воздуха вниз по долине, на равнину. Над ним устанавливается обратный перенос в сторону гор.

Ледниковые ветры

Ледниковый ветер - ветер, дующий вниз по леднику в горах. Этот ветер не имеет суточной периодичности, так как температура поверхности ледника круглые сутки производит на воздух охлаждающее действие. Надо льдом господствует инверсия температуры, и холодный воздух стекает вниз. Над некоторыми ледниками Кавказа скорость ледникового ветра порядка 3- 7 м/сек. Вертикальная мощность потока ледникового ветра порядка нескольких десятков, в особых случаях сотен метров.
Явление ледниковых ветров в громадных размерах представлено над ледяным плато Антарктиды. Здесь, над постоянным ледяным покровом, на периферии материка возникают стоковые ветры (чаще всего юго-восточные) - перенос выхоложенного воздуха по наклону местности в сторону океана. Так как, кроме барического градиента, на этот перенос воздуха влияет сила тяжести, то по мере приближения воздуха к береговой линии в нижних 100-200 м могут развиваться очень большие скорости ветра, до 20 м/сек и более, с резко выраженной порывистостью. Вместе с сильными ветрами, вызываемыми постоянным прохождением глубоких циклонов вокруг материка Антарктиды, стоковые ветры делают многие районы побережья Антарктиды самыми ветреными местами на Земном шаре.

Фен

Феном называется теплый, сухой и порывистый ветер, дующий временами с гор в долины. Температура воздуха при фене значительно и иногда очень быстро повышается; относительная влажность резко падает, иногда до очень малых значений. В начале фена могут наблюдаться резкие и быстрые колебания температуры и влажности вследствие встречи теплого воздуха фена с холодным воздухом, заполняющим долины. Порывистость фена указывает на сильную турбулентность фенового потока. Продолжительность фена может быть от нескольких часов до нескольких суток, иногда с перерывами (паузами).
Фены с давних времен известны в Альпах. Они очень часты на Западном Кавказе как на северных, так и на южных склонах хребта. Фены наблюдаются и под обрывистой стеной Яйлы на Южном берегу Крыма, в горах Средней Азии и Алтая, в Якутии, западной Гренландии, на восточных склонах Скалистых гор и во многих других горных системах.
О повторяемости фенов можно судить по следующим средним годовым числам дней с фенами: в Кутаиси 114, в Тбилиси 45, в Орджоникидзе 36, на Тел едком озере до 150, в Инсбруке (Австрия) 75.
Фен может возникнуть в любой горной системе, если воздушное течение общей циркуляции пересекает хребет достаточной высоты. С подветренной стороны воздух оттекает от хребта; создается разрежение, вследствие которого воздух вышележащих слоев засасывается вниз, как нисходящий ветер .
Высокая температура воздуха при фене обусловлена его адиабатическим нагреванием при нисходящем движении. Вертикальный градиент температуры в атмосфере почти всегда меньше сухоадиабатического, т. е. меньше 1°/100 м. Воздух, опускающийся по горным склонам в долину, нагревается по сухоадиабатическому закону, т. е. на один градус на каждые 100 м спуска. Поэтому он придет в долину, имея более высокую температуру, чем температура воздуха, ранее занимавшего долину. Температура фенового воздуха будет тем выше, чем больше высота, с которой он опускается. Относительная влажность в нем в то же время будет понижаться по мере роста температуры.

Допустим, например, что гребень хребта возвышается над уровнем долины на 3000 м, температура в долине до начала фена +10°, а средний градиент температуры 0,6°/100 м. На уровне гребня хребта температура будет, таким образом, -8°. Опустившись в долину, и нагревшись при этом на 30° (по одному градусу на каждые 100 м), воздух фена будет иметь внизу температуру +22°. Таким образом, температура в долине повысится в сравнении с первоначальной на 12°. Вместе с тем если относительная влажность вверху была 100%, то при той же удельной влажности, но при повышении температуры фенового воздуха с -8 до +22° она понизится до 17%.
При сильном развитии фена на подветренной стороне хребта нередко на наветренной стороне наблюдается восходящее движение воздуха по горному склону. Если хребет высок, то этот восходящий воздух, достигнув уровня конденсации, будет охлаждаться уже не по сухоадиабатическому, а по влажноадиабатическому закону. При этом на наветренной стороне произойдет образование облаков и, стало быть, выделение тепла конденсации.
Допустим затем, что на подветренном склоне воздух на столько же опустится вниз, на сколько он поднялся вверх на наветренном склоне. Облака в воздухе фена будут при этом испаряться. Однако если часть продуктов конденсации выпала из воздуха в виде осадков при восхождении по наветренному склону, то в скрытую форму перейдет меньше тепла, чем выделилось при конденсации, и воздух опустится в долину с более высокой температурой, чем была в начале процесса. Получим процесс, приближающийся к псевдоадиабатическому.
Если воздух сначала поднимается по наветренным склонам и в нем происходит облакообразование, то из долины на подветренной стороне можно наблюдать над гребнем хребта стену облаков. При опускании фенового воздуха по подветренному склону содержащиеся в нем облака испаряются; на наветренном склоне они, напротив, все время образуются заново. В результате облачная масса в феновом потоке - феновая стена - кажется неподвижно прикрепленной к гребню хребта.
Бывает и так, что фен, особенно вначале, сводится к постепенному оседанию и динамическому нагреванию воздуха в антициклоне, занимающем горный район. По мере снижения инверсии оседания высокие температуры захватывают все более низкие места; однако до самых низких долин потепление может и не дойти, они останутся занятыми холодным воздухом. При таком антициклоническом фене скорости ветра невелики, а феновое повышение температуры может происходить на обоих склонах хребта одновременно, как это много раз наблюдалось и на Кавказе, и в Альпах.
Особенно сильное повышение температуры при фене бывает тогда, когда воздух, в котором развивается фен, с самого начала очень теплый, например когда через хребет перетекает тропический воздух за теплым фронтом. Высокая температура воздуха дополнительно повышается адиабатически при нисходящем движении. Так, в первых числах мая 1935 г. в северных предгорьях Кавказа южный фен приносил воздух с Армянского нагорья. При этом температура повышалась в Нальчике до + 32°, в Моздоке до +40°, а относительная влажность опускалась до 13%. Эффект повышения температуры особенно велик и в том случае, если до фена воздух в долине был сильно выхоложен излучением. В Монтане (Скалистые горы) однажды в декабре температура повысилась с -40 до +4° в течение 7 часов.
Продолжительный и интенсивный фен может привести к бурному таянию снега в горах, к повышению уровня и разливам горных рек и т. д. Летом фен вследствие своей высокой температуры и сухости может губительно действовать на растительность. В Закавказье (район Кутаиси) случается, что при летних фенах листва деревьев высыхает и опадает.
Но фен может наблюдаться и в арктическом воздухе, когда последний, например, перетекает через Альпы или Кавказ и опускается по южным склонам. Даже в Гренландии стекание воздуха с трехкилометровой высоты ледяного плато на фиорды создает очень сильные повышения температуры. В Исландии при фенах наблюдались повышения температуры почти на 30° за несколько часов.
При перетекании хребта в воздушном течении могут возникать стоячие волны, так называемые феновые волны, с амплитудой порядка нескольких километров, иногда приводящие к образованию чечевицеобразных облаков. Эти волны распространяются вверх до высоты в несколько раз большей, чем высота хребта.

Бора

Борой называется сильный холодный и порывистый ветер, дующий с низких горных хребтов в сторону достаточно теплого моря. Бора с давних пор известна в районе Новороссийской бухты на Черном море и на Адриатическом побережье Югославии, в районе Триеста. Сходные явления обнаружены на Новой Земле и в некоторых других местах. К типу боры относится и сарма близ Ольхонских ворот на Байкале. Достаточное сходство с борой по происхождению и проявлениям имеют норд в районе Баку, мистраль на Средиземноморском побережье Франции, от Монпелье до Тулона, нортсер в Мексиканском заливе (Мексика, Техас).
Бора возникает в Новороссийске, как и в Адриатике, в тех случаях, когда холодный фронт подходит к прибрежному хребту с северо-востока. Холодный воздух сразу же переваливает невысокий хребет. Низвергаясь вниз по горному хребту под действием силы тяжести, воздух приобретает значительную скорость: в Новороссийске в январе скорость ветра при боре в среднем выше 20 м/сек. Падая на поверхность воды, этот нисходящий ветер создает сильное волнение. При этом резко понижается температура воздуха, которая до начала боры была над теплым морем достаточно высокой.
Конечно, падая вниз, воздух боры адиабатически нагревается, как и при фене. Но высота хребта невелика, а первоначальная температура воздуха низка в сравнении с температурой воздуха, ранее располагавшегося над" морем. В результате температура в районе, куда вторгается бора, понижается. В Новороссийске случалось при боре понижение температуры на 25° и более.
Новороссийская бора затухает в море уже в нескольких километрах от города. Однако бора в Адриатике при некоторых синоптических положениях охватывает значительную часть моря.
За год в Новороссийске наблюдается в среднем 46 дней с борой, чаще всею с ноября по март. Продолжается бора каждый раз 1-3 суток, а иногда до недели.

Шквалы

Иногда на ограниченных территориях наблюдаются резкие кратковременные усиления ветра, называемые шквалами. Ско рость ветра при шквале внезапно, порывом, усиливается да 20 м/сек и более; это усиление ветра продолжается несколько минут, а иногда повторяется на протяжении короткого времени.

Более или менее резко меняется и направление ветра. Несмотря на кратковременность шквалов, они могут приводить к катастрофическим последствиям.
Шквалы в большинстве случаев связаны с кучево-дождевыми (грозовыми) облаками либо местной конвекции, либо холодного фронта. В первом случае они называются внутримассовыми, во втором - фронтальными.
Внутримассовый шквал обусловлен тем, что в передней части кучево-дождевого облака возникает сильное восходящее движение воздуха, а в центральной и тыловой частях - нисходящее, в частности создаваемое ливневыми осадками, увлекающими с собой воздух. В облаке и под ним возникает, таким образом, вихревое движение воздуха с горизонтальной осью, в которое вовлекается воздух из смежных районов. При приближении большого облака конвекции ощущается усиление ветра и поворот его направления к облаку; в резко выраженных случаях это явление принимает форму шквала.

Сходные условия будут и в случае фронтальных шквалов. Здесь также играет роль восходящее движение теплого воздуха перед продвигающимся холодным фронтом и нисходящее движение в голове холодного воздуха за фронтом, принимающее форму резкого "обрушивания". Фронтальные шквалы наблюдаются вдоль фронта одновременно в ряде мест. Поэтому в XIX веке, когда было установлено существование холодных фронтов, их называли линиями шквалов.
Шквал обычно связан с ливневыми осадками и грозой, иногда с градом. Лишь в условиях большой сухости воздуха возможны шквалы без образования кучевых облаков.
Атмосферное давление при шквале резко повышается в связи с бурным выпадением осадков, а затем снова падает (грозовой нос).

Маломасштабные вихри

В условиях большой неустойчивости атмосферной стратификации, кроме обычных грозовых шквалов, могут возникать еще особые вихри с вертикальной осью, напоминающие циклоны, однако миниатюрных масштабов. Во-первых, это совсем малые пыльные вихри, во множестве возникающие над перегретой почвой в пустынях (но не только в пустынях), особенно на границах, где резко меняются свойства подстилающей поверхности. В Сахаре на площади 10 км2 таких вихрей наблюдалось иногда до 100 в день. Часты они летом на восточном Памире. Поперечник их от 1 до 100 м, высота до 1 км, скорость перемещения 20-30 км/час. В таком вихре наблюдается быстрое вращение воздуха при одновременном его подъеме вверх, так что попавшие в вихрь пыль, листья и другие предметы, увлекаются по спиральным путям.
Большее значение имеют более крупные вихри, называемые над морем смерчами, а над сушей - тромбами. В Северной Америке тромбы называют торнадо.

Вихрь возникает обычно в передней части грозового облака и проникает сверху до самой земной поверхности. У смерчей диаметр вихря порядка десятков метров, у тромбов - порядка 100-200 м, а в американских торнадо и больше (это устанавливается по ширине полосы разрушений).
Тромб виден как темный столб между облаком и землей, расширяющийся кверху и книзу, или как хобот, свисающий из облака. Это объясняется тем, что вихрь втягивает сверху облако, а снизу пыль или воду; кроме того, при сильном падении давления внутри вихря происходит конденсация водяного пара.
Вихрь перемещается вместе с облаком чаще всего со скоростью порядка 30-40 км/час. Время существования смерчей измеряется минутами, тромбов - десятками минут, иногда несколькими часами. За это время вихрь может продвинуться над морем на несколько километров, а над сушей - на десятки, иногда даже на сотни километров, все сметая на своем пути. Атмосферное давление в вихре сильно понижено, на десятки или даже на сотню миллибаров. Воздух вращается вокруг оси вихря, одновременно поднимаясь вверх. Скорости ветра в тромбах могут достигать 50-100 м/сек, как это можно определить по разрушениям; очень велики и восходящие скорости. Ветер при тромбе срывает и разрушает легкие постройки, переносит на большие расстояния людей и животных, ломает и вырывает с корнем деревья, прокладывая в лесах просеки. Падение давления при прохождении тромба бывает настолько большим и быстрым, что наружное давление не успевает выравняться с давлением внутри здания; давление внутри остается более высоким. Поэтому дома, попавшие в сферу действия тромба, иногда взрываются изнутри: с них слетает крыша, вылетают оконные рамы, даже разрушаются стены. Смерчи обладают меньшей разрушительной силой.
Конечно, тромб сопровождается грозой, ливневым дождем, градом. Водяные смерчи реже связаны с грозами.
Тромбы проходят поодиночке, хотя торнадо изредка наблюдаются по два или по нескольку. Смерчи часто возникают сериями по нескольку вихрей.
В Европе тромбы сравнительно редки и наблюдаются преимущественно в жаркую летнюю погоду в послеполуденные часы в воздушных массах тропического происхождения с большими вертикальными градиентами температуры. В направлении к северу они отмечались до северной Шотландии, южной Норвегии, Швеции (до 60° с. ш.), Соловецких островов; в Сибири - до низовьев Оби. На Европейской территории СНГ каждое лето в разных местах, и на юге, и в центре, отмечается несколько тромбов. Были случаи, когда они достигали особой катастрофической силы, как, например, московский тромб 29 июня 1904 г., сравнимый по интенсивности с американскими торнадо. По-видимому, на Азиатской территории СНГ тромбы возникают значительно чаще, но, проходя в малонаселенных районах, наблюдаются реже.
В США, между Скалистыми и Аппалачскими горами, особенно на юго-востоке, торнадо очень часты и обладают исключительной разрушительной силой. За год в США наблюдается в среднем свыше 200 торнадо, но в отдельные годы - свыше 800, преимущественно в теплое время года. Интенсивность их, конечно, разная. Но в общем их диаметры и скорости ветра в них (до 125 м/сек и более) больше, чем в европейских тромбах, а причиняемые ими разрушения и убытки огромны. Случалось, что поднимались в воздух дома вместе с жителями; полное разрушение домов происходит очень часто. В среднем за год насчитывается свыше 200 смертных случаев от торнадо, а в одном только случае торнадо 18 марта 1925 г. было убито почти 700 человек. Убытки от торнадо ежегодно исчисляются многими де-
сятками миллионов долларов. Одно единственное торнадо в Северной Дакоте 20 июня 1957 г. разрушило 500 домов на площади в одну квадратную милю и причинило убытков на 15 миллионов долларов.
В тромбах наблюдается вращение ветра как в циклоническом, так и в антициклоническом направлении, хотя давление в тромбе всегда понижено. Антициклоническое вращение возможно, если центробежная сила так велика, что перекрывает силу градиента. Наиболее низкое давление, наблюдавшееся в центре торнадо, 912 мб.
Тромбы (торнадо) наблюдаются в очень теплом и влажном неустойчиво стратифицированном воздухе, иногда вблизи фронтов, как холодных, так и теплых, но иногда и на значительном расстоянии от них. Очевидна их связь с грозовыми облаками. Поэтому можно думать, что тромб является особой, сравнительно редкой разновидностью обычного грозового шквала. Но при шквале в грозовом облаке наблюдается вихрь с горизонтальной осью, как описано выше. При тромбе направление оси вихря по еще невыясненным причинам меняется: ось вихря загибается к земной поверхности и достигает ее, превращаясь между облаком и землей в вертикальную. Так получается тромб, а иногда и два тромба, по двум сторонам грозового облака.
Преобладание и увеличенную интенсивность торнадо в США по сравнению с тромбами в Европе можно объяснить тем, что в США летом часто господствует очень теплый, влажный и неустойчиво стратифицированный воздух с Мексиканского залива, благоприятный для образования гроз и торнадо. В Европе такие условия реже: тропический воздух попадает в Европу сравнительно редко (на Европейскую территорию СНГ чаще, а на Азиатскую - еще чаще).

Служба погоды

Непрерывно происходящие изменения в состоянии погоды связаны в первую очередь с процессами общей циркуляции атмосферы. Смена дня и ночи вносит в погоду достаточно простые и регулярные изменения в виде суточного хода метеорологических элементов или в виде смены бризов и т. п. Но резкие и нерегулярные изменения, гораздо более характерные для погоды, являются результатом смены воздушных масс, прохождения разделяющих их фронтов, перемещения и эволюции циклонов и антициклонов. В тропиках эти изменения значительно меньше, чем во внутритропических широтах, потому что условия атмосферной циркуляции там более устойчивы и циклоническая деятельность слабее. В связи с такой обусловленностью изменений погоды, в течение последнего столетия возникла так называемая служба погоды. В задачи ее входит своевременная информация населения, административных и хозяйственных организаций о существующих условиях погоды и предсказание условий погоды на будущее время.
Материальная база службы погоды состоит, во-первых, из сети синоптических станций, т. е. метеорологических станций, срочно передающих свои одновременные наблюдения в центры службы погоды. До 1920-х годов почти единственным средством связи при этом служил телеграф; в настоящее время основное значение для службы погоды имеет радиосвязь. С помощью радиосвязи удалось распространить действие службы погоды фактически на весь Земной шар. Однако до сих пор многие районы охвачены ею еще неудовлетворительно, в особенности океанические районы южного полушария.
В подавляющем большинстве государств мира существуют центральные, а в больших странах также и областные учреждения службы погоды; чаще всего их называют бюро погоды. Небольшие учреждения такого рода существуют также при аэропортах, в морских портах и т. д. Служба погоды России возглавляется Гидрометеорологическим центром России в Москве.
Метеорологические сведения передаются со станций в центры службы погоды зашифрованными с помощью особых цифровых кодов. Сроки и волны радиопередач согласованы в международном порядке. В учреждениях службы погоды эти сведения наносятся цифрами и условными знаками на синоптические карты погоды (рис. 115). Такие карты составляются 4 раза в сутки и чаще, за каждый срок наблюдений на станциях.

В настоящее время, когда синоптические карты, на которые наносятся данные тысяч станций, могут охватывать все полушарие и даже весь Земной шар и когда, кроме приземных карт, составляются также и высотные карты (барической топографии и др.), объем этой систематизированной информации об атмосферных условиях очень велик. В целях экономии усилий и средств в последнее время переходят на централизованную систему составления и анализа синоптических карт в немногих центрах, откуда карты распространяются путем факсимильной передачи по проводам или по радио в органы службы погоды на местах. Прием синоптических карт по радио возможен и в воздухе, и на судах в открытом океане. В главе первой уже говорилось, что в настоящее время решается задача организации Всемирной, службы погоды, в которой кооперация различных стран по производству наблюдений, распространению информации и даче прогнозов должна стать еще более тесной. В рамках этой всемирной службы особое внимание уделяется организации наблюдений с метеорологических спутников.

Синоптический анализ и прогноз

Анализ синоптических карт (и разных других вспомогательных материалов, как аэрологические диаграммы, вертикальные разрезы и пр.) состоит в следующем. По сведениям, нанесенным на карту, устанавливается фактическое состояние атмосферы в момент наблюдений: распределение и характер воздушных масс и фронтов, расположение и свойства атмосферных возмущений, а кроме того, расположение и характер облачности и осадков, распределение температуры и пр. в связи с этими условиями атмосферной циркуляции. Между прочим, атмосферные возмущения, фронты и воздушные массы, изучаемые с помощью синоптических карт, называются синоптическими объектами. Coставляя карты от срока к сроку, можно следить по ним за изменениями состояния атмосферы, в частности за перемещением и эволюцией атмосферных возмущений, перемещением, трансформацией и взаимодействием воздушных масс и пр. Представление атмосферных условий на синоптических картах дает удобную возможность и для информации о состоянии погоды.
Главная и более трудная задача состоит, однако, не в информации, а в прогнозе ожидаемых изменений погоды, прежде всего на короткий срок вперед (на 1-2 суток). Кратко можно сказать, что эта задача сводится, во-первых, к определению, как в следующие несколько десятков часов должны будут переместиться и измениться синоптические объекты - атмосферные возмущения, фронты и воздушные массы. Это так называемый прогноз синоптического положения. Затем делают заключения о том, как в связи с этими перемещениями и изменениями должны меняться условия погоды в рассматриваемом районе. Именно последнее нужно потребителю прогнозов.
При прогнозе синоптического положения приходится пользоваться прежде всего экстраполяцией во времени, т. е. предполагать, что на некоторый промежуток времени атмосферные процессы будут происходить с теми же скоростями или ускорениями, с какими происходили до сих пор. Это, конечно, грубый прием, могущий привести к большим ошибкам, но в большинстве случаев применяемый с достаточным успехом. Он уточняется с помощью использования тех связей между атмосферными процессами, которые установлены эмпирически за много лет анализа синоптических карт или которые вытекают из законов динамики и термодинамики атмосферы. Связи эти применяются преимущественно качественно, что более или менее обеспечивает правильный прогноз направления процесса, но может приводить к ошибкам в определении темпа и интенсивности процессов.
О погоде, связанной с будущим положением и свойствами возмущений, масс и фронтов, судят по фактическим свойствам этих синоптических объектов, учитывая опять-таки возможное изменение этих свойств.
При всей простоте приемов синоптического анализа их применение представляет собой нелегкую задачу и требует большого практического опыта у прогнозиста (синоптика). От ошибок, иногда даже грубых, современные краткосрочные прогнозы погоды не свободны. Однако в общем качество прогнозов оказывается удовлетворительным для многих потребностей практики, в особенности для обеспечения действий авиации. Без регулярного синоптического обслуживания современная авиация работать не может. Есть и ряд других областей хозяйства, для которых получение прогнозов погоды необходимо. Средства, затрачиваемые на службу погоды, во много раз перекрываются теми выгодами, которые она приносит.
Возможности улучшения прогнозов погоды в настоящее время видят в изыскании и введении в службу погоды вычислительных методов прогноза. Такие методы сводятся к численному интегрированию по времени (с помощью электронных вычислительных машин) уравнений динамики и термодинамики атмосферы, в которые подставляются начальные значения атмосферных условий в ряде точек, взятые из наблюдений. Работа в этом направлении ведется очень интенсивно.
Правда, разработанные до сих пор методы относятся преимущественно лишь к предвычислению барического поля. Переход от барического поля к погоде приходится производить еще прежними, качественными способами. Даже в предвычислении барического поля пока не достигнуто решающих практических успехов: удачность прогнозов остается того же порядка, что и удачность прогнозов обычными синоптическими методами. Объясняется это исключительной сложностью атмосферных процессов для математической формулировки задачи. Состояние атмосферы и закономерности атмосферных процессов в вычислительных схемах приходится упрощать, что, конечно, отражается на соответствии результатов вычисления действительности.
Однако можно надеяться, что в недалеком будущем задача вычислительного прогноза, и не только для барического поля, будет решена с точностью, удовлетворяющей потребностям практики.

Долгосрочные прогнозы

Еще сложнее задача долгосрочных прогнозов погоды - на декаду, месяц, сезон вперед. Степень точности здесь неизбежно ниже, чем в прогнозах краткосрочных. Рациональная постановка задачи долгосрочного прогноза должна сводиться к определению каких-то общих характеристик погоды будущего: степени зональности или меридиональности циркуляции, средних месячных температур, отклонений осадков от нормы, самых общих черт в ходе температуры и т. д. Вряд ли когда-либо люди достигнут возможности ответить на вопрос: будет ли в таком-то месте дождь такого-то числа в будущем месяце? Сложный комплекс условий, которые будут определять такой дождь или его отсутствие, часто нельзя предвидеть даже накануне; тем более невозможно это сделать за долгое время вперед.
Но и задача определения общих характеристик погоды на долгое время вперед еще далека от удовлетворительного разрешения. Анализ ежедневных синоптических карт уже не подходит для этой цели; приходится прибегать к способам обобщенного представления атмосферных условий, как сборные или средние карты за те или иные периоды времени. Попытки применения для долгосрочных прогнозов таких приемов, как учет инерции в ходе атмосферных процессов (т. е. сохранения знака аномалии погоды на некоторое время вперед), приводили к самым ограниченным успехам. Ограниченные результаты дали и многочисленные определения корреляционных связей между ходом метеорологических элементов в разных местах и в разные периоды года, а также и попытки изыскания периодов и ритмов в ходе атмосферных процессов на значительных отрезках времени.
Более плодотворным и распространенным является прием подбора аналогов, исходящий из предположения, что за сходными начальными условиями в разных случаях следует сходное дальнейшее развитие. Однако таким предположением следует пользоваться с очень большой осторожностью, потому что уже небольшие различия в начальных условиях могут совершенно изменить весь дальнейший ход процессов.
Существенное значение для решения задачи долгосрочных прогнозов имеет сопоставление атмосферных процессов с процессами в мировом океане, поскольку между двумя этими сферами Земли происходит взаимный обмен теплом и влагой.
Представляется плодотворным сопоставление атмосферных процессов с солнечной активностью, т. е. с явлениями, происходящими на поверхности Солнца (пятна и др.). Связи между атмосферными процессами и солнечной активностью, несомненно, существуют, хотя они известны еще далеко не до конца и мало объяснены. Поскольку в солнечных процессах обнаруживается определенная цикличность и они предшествуют определенным изменениям в атмосфере, это может быть использовано в целях долгосрочного прогноза погоды. Но и на этом пути достижений еще немного. Есть попытки и вычислительных долгосрочных прогнозов на базе уравнений гидродинамики, не получившие еще практического значения.
На поиски рациональных методов долгосрочных прогнозов направлены сейчас энергичные усилия; это важнейшая практическая задача метеорологии, ждущая разрешения. Пока оправдываемость прогнозов не слишком значительно превышает случайные совпадения.